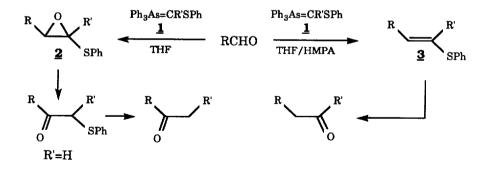
HOMOLOGATION OF ALDEHYDES USING (PHENYLTHIOMETHYLENE) TRIPHENYLARSORANE : SELECTIVE PREPARATION OF α -THIOPHENOXYEPOXIDES AND PHENYLTHIOENOL ETHERS

B. BOUBIA, C. MIOSKOWSKI*


Université Louis Pasteur, Laboratoire de Chimie Bio-organique associé au CNRS, Faculté de Pharmacie, 74 route du Rhin BP 24, 67401 Illkirch FRANCE

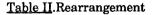
S. MANNA and J.R. FALCK

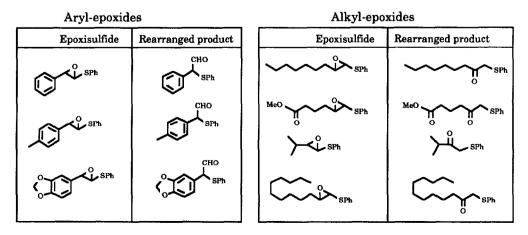
Departments of molecular Genetics and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 U.S.A.

Summary: The title arsonium ylide reacts with aldehydes to give exclusively α -thiophenoxyepoxides in THF and phenylthioenol ethers in THF/HMPA. The former adducts are readily transformed to α -thiophenoxy carbonyls and the latter to one-carbon homologated aldehydes.

Arsonium ylides emerged in recent years as useful reagents for organic synthesis¹. Addition of unstabilized ylides to carbonyls leads specifically to E-epoxides² whereas stabilized ylides afford only olefins³. Semi-stabilized, e.g., allylic and benzylic ylides display a dual reactivity dependent upon structure and reaction conditions⁴. However, relatively little is known about the mechanistic consequences of heteroatom substitution at the ylide carbon and its influence on product distribution⁵. Herein, we describe the preparation of (phenylthiomethylene) triphenylarsorane (<u>1</u> R'=H) and its utility for the homologation of aldehydes via the selective synthesis of α -thiophenoxy epoxides <u>2</u> and phenylthioenol ethers <u>3</u>.

Reaction of several representative aldehydes with ylide $\underline{1}$ in THF^{4a,b} at -10°C (procedure A) affords α -thiophenoxyepoxides $\underline{2}$ in good yield⁶ (Table I). In contrast to the usual course of the epoxide formation by arsonium ylides^{2,4d,5}, the Z-isomer, arising from the corresponding *threo*-betaine, predominates in each case. Previously, α -thiophenoxy epoxides have been prepared directly from carbonyls using sulfonium ylides or chloromethyl aryl sulfide in the presence of potassium *tert*-butoxide⁷. The present method, by comparison, is generally superior with regard to ease of operation and yield.


$Ph_3As = CHSPh$ <u>1</u>		RCHO THF -10°C	R	$\mathbf{R} = \frac{2}{2}^{O}$		
. [Aldehyde	<u>2/3</u>	E / Z ^a	Yield (%)		
	СС	100/0	20/80	70		
	СНО	100/0	10/90	85		
	о СНО	100/0	15/95	80		
	Сно	100/0	20/80	90		
Γ	мео Сно	100/0	30/70	75		
	≻сно	100/0	25/75	70		
	ССНО	100/0	25/75	85		


Table I. Reaction of ylide 1 with aldehydes in THF.

^a Determined by ¹H NMR

Brief exposure of **2** to silica gel results in quantitative rearrangement to

 α -thiophenoxy carbonyls (Table II) which are themselves useful synthetic intermediates⁸. The type of rearrangement is dictated by the nature of the adduct⁷. Those from aromatic aldehydes give rise to α -thiophenoxy aldehydes by migration of the aryl (or thiophenyl) group. Preferential hydrogen migration to α '-thiophenoxy ketones is observed with adducts from aliphatic aldehydes.Desulfuration leads to the corresponding methyl alkyl ketones.

Condensations using ylide 1 in THF/HMPA at -78°C (procedure B) are dramatically different^{4a,b}. Aromatic aldehydes yield E-phenylthioenol ethers 3 exclusively⁸ (Table III). The union with aliphatic partners is less stereoselective, but still favors the E-isomer, and is accompanied by small amounts of 2. Again, the major pathway to products is through the *threo* betaine. Since thioenol ethers such as 3 are readily transformed into aldehydes¹⁰ or functionalized aldehydes¹¹ under mild conditions, Procedure B formally represents a one-carbon homologation of aldehydes.

Table III. Reaction of ylide 1 with aldehydes in THF/HMPA.

Ph ₃ As = <u>1</u>	CHSPh	RCHO /HMPA -78°C		F SPh	3	SPh
	Aldehyde	<u>2/3</u>	2 E / Z ^a	<u>3</u> E / Z^a	Yield ^b (%)	
	СНО	0/100	/	100/0	67	
	СНО	0/100	/	100/0	63	
		0/100	/	100/0	55	
	Ссно	10/90	25/75	95/5	70	
	мео Сно	10/90	25/75	70/30	65	
	> -сно	10/90	30/70	95/5	69	
	ССНО	10/90	35/65	60/40	76	

^a Determined by ¹H NMR. ^b Combined yield of **2** and **3**.(isolated yields)

Arsonium Salt Preparation:

Equimolar amounts of triphenylarsine, sodium iodide and chloromethyl phenyl sulfide are heated at reflux in acetonitrile (10 mmol each/15 ml) for 3h, cooled to ambient temperature, filtered, and the solvent removed in vacuo. Trituration of the residue under ether furnishes the arsonium iodide as a stable, light yellow powder (54%), mp 112°C (dec).

Procedure A:

To a stirred suspension of arsonium salt (1mmol) in 10 ml of THF under argon at -30° C is added n-butyllithium (1.1 mmol, 1.6 M in hexane). After 30 min, the dark yellow, homogeneous solution of <u>1</u> is warmed to -10° C and the aldehyde (1 mmol) is added dropwise. The mixture is allowed to come to room temperature over 3h, quenched with water, and extracted with ether (3 x 20 ml). The combined ethereal extracts are washed with brine, dried over sodium sulfate, and concentrated in vacuo. Flash chromatography over triethylamine-deactivated silica gel affords 2.

Procedure B:

Generation of the ylide $\underline{1}$ according to procedure A in THF/HMPA (85:15) gives a red, homogeneous solution to which the aldehyde is added at -78°C. Extractive isolation and chromatography as above provides $\underline{3}$ as well as a small amount of $\underline{2}$, if the aldehyde is aliphatic.

Acknowledgement: Supported financially by grant USPHS NIH (GM36465), the Robert A. Welch Foundation (I-782), and NATO (RG85/0026). We thank Dr. F. BELLAMY (Laboratoires Fournier Dijon) for helpful discussions.

References and notes

- Recent examples: P. Chabert, C. Mioskowski, and J.R. Falck, Tetrahedron Lett., <u>30</u>, 2545-2548 (1989)
 L. Shi, W. Xia, J. Yang, X. Wen, Y.Z. Huang, Tetrahedron Lett., <u>28</u>, 2155-2158 (1987)
- 2. W.C. Still and V.J. Novack, J. Amer. Chem. Soc., <u>103</u>, 1283-1285 (1981)
- 3. S. Trippett and M.A. Walker, J. Chem. Soc. C., 1114-1117 (1971)
- (a) J.B. Ousset, C. Mioskowski, and G. Solladié, Tetrahedron Lett., <u>24</u>, 4419-4422 (1983)
 (b) J.B. Ousset, C. Mioskowski, and G. Solladie, Syn. Commun., <u>13</u>, 1193-1196 (1983)
 (c) J.D. Hsi and M. Koreeda, J. Org. Chem., <u>54</u>, 3229-3231 (1989)
 (d) R. Broos and M.J.O. Anteunis, Bull. Soc. Chim. Belg., <u>97</u>, 271-279 (1988)
- 5. D. Lloyd, I. Gosney, and R.A. Ormiston, Chem. Soc. Rev., <u>16</u>, 45-74 (1987)
- 6. Satisfactory spectral data were obtained for all new compounds using chromatographically homogeneous samples.
- 7. T. Cohen, D. Kuhn, and J.R. Falck, J. Amer. Chem. Soc., <u>97</u>, 4749-4751 (1975) and cited references.
- 8. T. Sato, H. Okazaki, J. Otera, and H. Nozaki, J. Amer. Chem. Soc., <u>110</u>, 5209-5211 (1988)
- 9. Cf. (Phenylthiomethylene) triphenylphosphorane, R. Muthukrishnan and M. Schlosser, Helv. Chim. Acta, <u>59</u>, 13-20 (1976).
- A.J. Mura, G. Majetich, P.A. Grieco, and T. Cohen, Tetrahedron Lett., 4437-4440 (1975)
 T. Mukaiyama, K. Kamio, S. Kobayashi, H. Takei, Bull. Chem. Soc. Japan, <u>45</u>, 3723 (1972)
- H.J. Bestmann and J. Angerer, Liebigs Ann. Chem., 2085-2088 (1974) (Received in France 15 July 1989)